1. <div id="a8tz1"><tr id="a8tz1"><kbd id="a8tz1"></kbd></tr></div>

        1. [1]張寶錄,曾蕊,杜欣睿,等.基于逆向地應力轉換的煤系儲層壓裂層段彈性參數取值分析[J].測井技術,2018,42(04):433-438.[doi:10.16489/j.issn.1004-1338.2018.04.012]
           ZHANG Baolu,ZENG Rui,DU Xinrui,et al.Analysis on the Value of Elastic Parameters of Coal Measure Reservoir of Fractured Section Based on Reverse In-situ Stress Transformation[J].WELL LOGGING TECHNOLOGY,2018,42(04):433-438.[doi:10.16489/j.issn.1004-1338.2018.04.012]
          點擊復制

          基于逆向地應力轉換的煤系儲層壓裂層段彈性參數取值分析()
          分享到:

          《測井技術》[ISSN:1004-1338/CN:61-1223/TE]

          卷:
          第42卷
          期數:
          2018年04期
          頁碼:
          433-438
          欄目:
          非常規油氣評價
          出版日期:
          2018-09-05

          文章信息/Info

          Title:
          Analysis on the Value of Elastic Parameters of Coal Measure Reservoir of Fractured Section Based on Reverse In-situ Stress Transformation
          文章編號:
          1004-1338(2018)04-0433-06
          作者:
          張寶錄 曾蕊 杜欣睿 吳思薇 茍焌迤
          中國石油測井有限公司長慶分公司, 陜西 西安 710200
          Author(s):
          ZHANG Baolu ZENG Rui DU Xinrui WU Siwei GOU Junyi
          Changqing Branch, China Petroleum Logging CO.LTD., Xi'an, Shaanxi 710200, China
          關鍵詞:
          測井評價 壓裂法 現今地應力 泊松比 致密砂巖 彈性參數
          Keywords:
          Keywords: log evaluation fracturing method current ground stress Poisson's ratio tight sandstone elastic parameter
          分類號:
          P631.84; P554
          DOI:
          10.16489/j.issn.1004-1338.2018.04.012
          文獻標志碼:
          A
          摘要:
          為了提高壓裂層段巖石彈性參數取值的可靠度,基于逆向轉換分析思路,利用壓裂法確定煤系致密砂巖儲層地應力大小。在考慮巖石熱膨脹系數(β)基礎上,利用地應力對地層巖石泊松比(ν)和彈性模量(E)進行測井評價。研究結果表明,所研究煤系致密砂巖的E和ν具有非常好的正相關性,該致密砂巖儲層的β值為5×10-6/ ℃。采用常規動靜態參數轉換方法獲取的巖石泊松比測井解釋結果是可靠的,可以用于壓裂段的現今地應力評價。對于彈性模量的評價結果,常規方法在全井段的可靠度均較低,僅在薄砂泥互層段界面處較為可靠。為了提高該煤系地層現今地應力的測井預測精度,建議選用包含巖石泊松比而不含彈性模量參數的地應力測井解釋模型。或者采用基于逆向地應力運算檢驗方法對巖石彈性模量進行測井評價。該方法克服了壓裂層段彈性參數取值可靠度不明的問題,提出了提高壓裂層段彈性參數取值精度的方法,對指導地應力場精細測井預測具有積極意義。
          Abstract:
          Abstract: In order to improve the reliability of rock elastic parameters in fracturing intervals, based on the idea of reverse conversion analysis, the fracturing method is used to determine the ground stress of coal measure tight sandstone reservoir. Considering the thermal expansion coefficient(β)of the rock, the ground stress is used to conduct logging evaluation of the Poisson's ratio(ν)and elastic modulus(E)of the formation rock. The results show that the E and ν of the coal measure tight sandstone studied have a very good positive correlation. The tight sandstone reservoir has a β value of 5×10-6/ ℃. The logging interpretation of rock Poisson's ratio obtained by the conventional dynamic and static parameter conversion method is reliable and can be used for the current ground stress evaluation of the fracturing interval. For the evaluation results of the elastic modulus, the reliability of the conventional method used in the whole well is low, and it is reliable only at the interface of the interbeded thin sand mud section. To improve the logging prediction accuracy of the current ground stress of the coal measure formation, it is recommended to use the ground stress logging interpretation model including the rock Poisson's ratio but without elastic modulus. The logging evaluation of rock elastic modulus based on the inverse ground stress calculation test method could also be performed. The proposed method could address the poor reliability of and improve the accuracy of the elastic parameters of the fracturing interval, which has positive significance for guiding fine logging prediction of ground stress field.

          參考文獻/References:

          [1] ZOBACK M D, BARYON C A, BRUDY M, et al. Determination of stress oritation and magnitude in deep wells [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40: 1049-1076. [2] NELSON E J, MEYER J J, HILLIS R R, et al. Transverse drilling-induced tensile fractures in the west tuna area, gippsland basin, australia: implications for the in-situ stress regime [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42: 361-371. [3] YAGHOUBI A A, ZEINALI M. Determination of magnitude and oritation of the in-situ stress from borehole breakout and effect of pore pressure on borehole stability: case study in cheshmeh khush oilfield of iran [J]. Journal of Petroleum Science and Engineering, 2009, 67: 116-126. [4] FAN X Y, GONG M, ZHANG Q G, et al. Prediction of the horizontal stress of the tight sandstone formation in eastern sulige of China [J]. Journal of Petroleum Science and Engineering, 2014, 113: 72-80. [5] ZOBACK M D, RoLLER J C. Magnitude of shear stress on the san andress fault: implications of a stress measurement profile at shallow depth [J]. Science, 1979, 26. [6] 傅寧, 楊樹春, 賀清, 等. 鄂爾多斯盆地東緣臨興-神府區塊致密砂巖氣高效成藏條件 [J]. 石油學報, 2016, 37(增刊1): 111-120. [7] BRACE W F. Dilatancy in the fracture of crystalline rocks [J]. Journal of Geophysical Research, 1966, 71(16): 3939-3952. [8] GARDNER G H F, GARDNER L W, GREGORY A R. Formation velocity and density: the diagnostic basin for stratigraphic traps [J]. Geophysic, 1974, 39(6): 770-778. [9] ANDERSON O L. Stress corrosion theory of crack propagation with application to geophysics [J]. Review of Geophysics and Space Physics, 1977, 159(1): 78-89. [10] PICKETT. Acoustic character logs and their applications in formation evaluation [C]. SPE452, 1963: 659 -667. [11] SHEOREY P R. A Theory for in-situ stresses in isotropic and transversely isotropic rock [J]. International Journal of Rock Mechanics and Mining Sciences, 1994, 31: 23-24. [12] HAAS C J. Static stress-strain relationships [M]. New York: McGraw Hill, 1981. [13] SCHAFER K. In situ strain measurements in libya [J]. Rock Mechanics, 1980(Suppl 9): 49-60. [14] VAN K D W. Coal [M]. Amsterdam: Elsevier, 1961. [15] CASTAGNA, BATZLE, EASTWOOD. Relationships between com-pressional-wave and shear-wave velocities in clastic silicate rocks [J]. Geophysics, 50(4): 571-581. [16] HAN D H, NUR A, MORGAN D. Effects of porosity and clay content on wave velocities [J]. Geophysics, 1986, 51: 2093-2107.

          相似文獻/References:

          [1]萬金彬,李慶華,白松濤.頁巖氣儲層測井評價及進展[J].測井技術,2012,36(05):441.
           WAN Jinbin,LI Qinghua,BAI Songtao.Welllogging Evaluation in Shale Gas Reservoir and Its Advances[J].WELL LOGGING TECHNOLOGY,2012,36(04):441.
          [2]張鳳生,司馬立強,趙冉,等.塔河油田儲層裂縫測井識別和有效性評價[J].測井技術,2012,36(03):261.
           ZHANG Fengsheng,SIMA Liqiang,ZHAO Ran,et al.Log Identification and Effectiveness Evaluation on Reservoir Fractures in Tahe Oilfield[J].WELL LOGGING TECHNOLOGY,2012,36(04):261.
          [3]馮春珍,林偉川,成志剛,等.低滲透儲層測井分類和產能預測技術[J].測井技術,2012,36(03):308.
           FENG Chunzhen,LIN Weichuan,CHENG Zhigang,et al.Reservoir Classification and Productivity Forecasting Method for Low Prorosity and Permeability Reservoir with Log Data[J].WELL LOGGING TECHNOLOGY,2012,36(04):308.
          [4]葛祥,何傳亮,朱小紅,等.川東北地區陸相地層井壁穩定性測井分析[J].測井技術,2012,36(02):164.
           GE Xiang,HE Chuanliang,ZHU Xiaohong,et al.Borehole Stability Logging Analysis in Terrestrial Formation in Northeastern Sichuan[J].WELL LOGGING TECHNOLOGY,2012,36(04):164.
          [5]胡瑞波,常靜春,張文勝,等.歧口凹陷湖相碳酸鹽巖儲層巖性識別及儲集類型研究[J].測井技術,2012,36(02):179.
           HU Ruibo,CHANG Jingchun,ZHAN Wensheng,et al.On Lithology Identification of Limnetic Facies Carbonate Reservoir in Qikou Sag and Its Reservoir Types[J].WELL LOGGING TECHNOLOGY,2012,36(04):179.
          [6]章海寧,張翔,李國瑛,等.三塘湖盆地火山巖儲層測井定量評價方法[J].測井技術,2012,36(01):24.
           ZHANG Haining,ZHANG Xiang,LI Guoying,et al.Quantitative Log Evaluation Method for Volcanic Reservoir in Santanghu Basin[J].WELL LOGGING TECHNOLOGY,2012,36(04):24.
          [7]肖承文.塔里木盆地高壓氣藏出砂測井評價方法研究[J].測井技術,2012,36(01):41.
           XIAO Chengwen.On Sand Production Log Evaluation of Highpressure Gas Reservoir in Tarim Basin[J].WELL LOGGING TECHNOLOGY,2012,36(04):41.
          [8]張麗華,潘保芝,莊華,等.低孔隙度低滲透率儲層壓裂后產能測井預測方法研究[J].測井技術,2012,36(01):101.
           ZHANG Lihua,PAN Baozhi,ZHUANG Hua,et al.Productivity Log Forecasting Method for Postfrac Reservoir with Low Porosity and Low Permeability[J].WELL LOGGING TECHNOLOGY,2012,36(04):101.
          [9]趙江青,匡立春,劉應,等.非均質儲層孔喉結構的測井評價方法[J].測井技術,1998,22(S1):60.
          [10]李虎,范宜仁,叢云海,等.基于改進SADE算法的神經網絡預測儲層物性[J].測井技術,2012,36(06):585.
           LI Hu,FAN Yiren,CONG Yunhai,et al.A New Method Predicting Reservoir Properties with Neural Network Based on SADE Algorithm[J].WELL LOGGING TECHNOLOGY,2012,36(04):585.

          備注/Memo

          備注/Memo:
          基金項目: 國家自然科學基金項目硬脆/塑性泥頁巖微裂縫產生的巖石物理學機制基礎研究(41572130) 第一作者: 張寶錄,男,1976年生,工程師,從事測井資料采集與解釋工作。E-mail:[email protected]
          更新日期/Last Update: 2018-09-05
          11选五开奖结果