1. <div id="a8tz1"><tr id="a8tz1"><kbd id="a8tz1"></kbd></tr></div>

        1. [1]錢賡,穆鵬飛,楊海風,等.渤海海域常壓油藏實測地層壓力與流體性質關系[J].測井技術,2018,42(04):377-382.[doi:10.16489/j.issn.1004-1338.2018.04.002]
           QIAN Geng,MU Pengfei,YANG Haifeng,et al.Relationship Between Measured Formation Pressure and Fluid Properties in Normal-pressure Reservoirs in the Bohai Sea[J].WELL LOGGING TECHNOLOGY,2018,42(04):377-382.[doi:10.16489/j.issn.1004-1338.2018.04.002]
          點擊復制

          渤海海域常壓油藏實測地層壓力與流體性質關系()
          分享到:

          《測井技術》[ISSN:1004-1338/CN:61-1223/TE]

          卷:
          第42卷
          期數:
          2018年04期
          頁碼:
          377-382
          欄目:
          實驗研究
          出版日期:
          2018-09-05

          文章信息/Info

          Title:
          Relationship Between Measured Formation Pressure and Fluid Properties in Normal-pressure Reservoirs in the Bohai Sea
          文章編號:
          1004-1338(2018)04-0377-06
          作者:
          錢賡 穆鵬飛 楊海風 黃振 鄭彧
          中海石油(中國)有限公司天津分公司渤海石油研究院, 天津 300450
          Author(s):
          QIAN Geng MU Pengfei YANG Haifeng HUANG Zhen ZHENG Yu
          Bohai Petroleum Research Institute, Tianjin Branch of CNOOC, Tianjin 300450, China
          關鍵詞:
          電纜地層測試 實測地層壓力 折算壓力 單相流體 原油密度分異 壓力—深度關系
          Keywords:
          Keywords: wireline formation test measured formation pressure conversion pressure single-phase fluid crude oil density differentiation pressure-depth relationship
          分類號:
          P631.84
          DOI:
          10.16489/j.issn.1004-1338.2018.04.002
          文獻標志碼:
          A
          摘要:
          研究渤海海域諸多常壓油藏的連續電纜測壓數據發現,油層頂部實測地層壓力數據增壓現象普遍表現為實測地層壓力不同程度高于其等深折算壓力,壓力—深度線性關系存在不確定性、流體性質認識不清。將水靜力學基本原理、等壓面概念拓展到常壓油藏“U形水銀測壓計”物理模型,并建立地層壓力—原油密度函數關系,理論上證明地層壓力與原油密度為反比關系、油層頂部增壓的原因是地層原油密度相對偏低。進一步結合原油PVT與連續測壓數據并證實:①原油密度分異是常壓油藏油層頂部增壓的關鍵,同時連續測壓數據能夠反映常壓油藏單相流體密度分異特征; ②增壓段(純油區頂部)原油密度低于非增壓段(中—深部),實測地層壓力高于等深折算壓力即出現增壓; ③非增壓段(純油區中—深部)原油密度相對穩定,實測地層壓力與其折算壓力接近。明確常壓油藏實測地層壓力與流體性質關系,利于合理解釋壓力—深度關系、精細研究流體性質與分布規律。
          Abstract:
          Abstract: The study on the wireline pressure measurement data of many normal-pressue reservoirs in the Bohai Sea area found that the pressure-increase phenomenon of the measured formation pressure at the top of the oil layer was generally showed that the measured formation pressures are higher than the equivalent pressures at the same depth, the pressure-depth linear relationship uncertainty is observed and fluid properties are unclear. By applying the basic principles of hydrostatics and the isostatic surface concept to the physical model of the U-shaped mercury manometer of normal-pressure reservoir, and through establishing the relationship between formation pressure and crude oil density, it is theoretically proved that the formation pressure is inversely proportional to the density of crude oil and low crude oil density accounts for the pressure-increase of the oil layer top. Further combined with crude oil PVT and continuous pressure measurement data proved that:① The crude oil density differentiation is the key to the pressure increment of oil layer top in normal-pressure reservoirs; the continuous pressure measurement data can reveal the single-phase fluid density differentiation characteristics of normal-pressure reservoirs; ② The crude oil density in the pressure-increase section(top of the pure oil zone)is lower than that in the non-pressure-increase section(medium-deep section of the pure oil zone); the pressure-increase is confirmed if the measured formation pressure is higher than the equivalent pressure at the same depth; ③ The non-pressure-increase section(medium-deep section of the pure oil zone)has a relatively stable density, and has a close measured formation pressure and equivalent pressure at the same depth. Understanding the relationship between measured formation pressure and fluid properties in normal-pressure reservoirs is helpful for understanding pressure-depth relationship and fine study of fluid properties and distribution.

          參考文獻/References:

          [1] 匡立春. 電纜地層測試資料應用導論 [M]. 北京: 石油工業出版社, 2005. [2] 馬建國, 符仲金. 電纜地層測試器原理及其應用 [M]. 北京: 石油工業出版社, 1995. [3] DAKE L P. Fundamentals of reservoir engineering(developments in petroleum science, 8)[M]. Amsterdam: Elsevier, 1978: 1-9. [4] DAKE L P. The practice of reservoir engineering(developments in petroleum science, 36)[M]. Amsterdam: Elsevier, 1994: 51-72. [5] 錢賡, 張建民, 劉傳奇, 等. 利用靜壓數據探討渤海海域常壓油藏砂體連通性 [J]. 石油與天然氣地質, 2016, 37(4): 584-590. [6] 王向榮, 周燦燦, 王昌學, 等. 電纜地層測試器測井應用綜述 [J]. 地球物理學進展, 2008, 23(5): 1579-1585. [7] 王昌學, 曹文利, 王向榮. 電纜地層測試壓力梯度的計算與應用 [J]. 石油勘探與開發, 2008, 30(4): 476-481. [8] 李陽. 我國油藏開發地質研究進展 [J]. 石油學報, 2007, 28(3): 75-79. [9] 劉吉余, 郝景波, 伊萬泉, 等. 流動單元的研究方法及其研究意義 [J]. 大慶石油學院學報, 1998, 22(1): 7-9, 97. [10] 張維佳. 水力學 [M]. 北京: 中國建筑工業出版社, 2008. [11] 吳持恭. 水力學 [M]. 北京: 高等教育出版社, 2008. [12] 甘肅省地質調查院. 地球科學辭典[DB/OL]. 蘭州: 甘肅省地質礦產勘查開發局, 1999[2016]. http: ∥www. gsdkj. net: 81/Dict. aspx. [13] 何更生.油層物理 [M].北京:石油工業出版社, 2011. [14] 羅蟄潭. 油層物理 [M]. 北京: 地質出版社, 1985. [15] EMIL J B. Properties of petroleum reservoir fluids [M]. Boston: International Human Resources Development Corporation, 1979. [16] ABHIJIT Y D. Petroleum reservoir rock and fluid properties [M]. Boca Raton: CRC Press, Taylor & Francis Group, 2013: 93-123, 363-489. [17] ZOLTAN E H, BRIGITTE E W. Reservoir fluids [M]. Leoben: DI Claudia Scharf, 2004: 133-146. [18] WILLIAM D M JR, JOHN P S, CHRISTOPHER P L. The properties of petroleum fluids [M]. Tulsa: Penn Well Publishing Company. 1990: 257-347. [19] 王從崗, 張艷梅. 儲運油料學 [M]. 北京: 中國石油大學出版社, 2006. [20] 王敏芳. 油藏地球化學研究的理論基礎與發展趨勢 [J]. 地質地球化學, 2003, 31(3): 47-52. [21] 朱揚明, 張敏, 徐中一. 油藏非均質性及聚油史初探 [J]. 石油實驗地質, 1996(2): 162-167. [22] 李傳亮. 油藏工程原理 [M]. 北京: 石油工業出版社, 2005.

          相似文獻/References:

          [1]楊興琴,王書南,周子皓.地層測試與井下流體取樣分析技術進展[J].測井技術,2012,36(06):551.
           YANG Xingqin,WANG Shunan,ZHOU Zihao.Progresses in Formation Testing and Subsurface Fluid Sampling & Analysis Technology[J].WELL LOGGING TECHNOLOGY,2012,36(04):551.
          [2]高寶善.職業測井分析家協會測井年會征文啟事[J].測井技術,1993,17(04):301.
          [3]袁慶波.電纜式地層測試技術在丘陵油田水淹層評價中的應用[J].測井技術,2004,28(04):352.
           YUAN Qing-bo.Application of Wireline Formation Tester(WFT) Technology to Evaluating Water-flooded Reservoir in Qiuling Oilfield[J].WELL LOGGING TECHNOLOGY,2004,28(04):352.
          [4]馬建國.電纜式地層測試器[J].測井技術,1984,08(04):70.
          [5]運華云,于敦源,謝云,等.電纜地層測試技術在勝利灘海油氣勘探中的應用[J].測井技術,2009,33(01):67.
           YUN Hua-yun,YU Dun-yuan,XIE Yun.Application of MDT to Oil-gas Exploration in Shallow Sea Shengli Oilfield[J].WELL LOGGING TECHNOLOGY,2009,33(04):67.
          [6]趙立新,廖新維.電纜地層測試油氣層產能預測技術研究及應用[J].測井技術,2009,33(03):284.
           ZHAO Li-xin,LIAO Xin-wei.An Approach for Reservoir Yield Prediction Using WFT and Its Applications[J].WELL LOGGING TECHNOLOGY,2009,33(04):284.
          [7]孫華峰,陶果,周艷敏,等.電纜地層測試技術的發展及其在地層和油藏評價中的角色演變[J].測井技術,2010,34(04):314.
           SUN Huafeng,TAO Guo,ZHOU Yanmin,et al.The Evolutive Roles of WFT in Formation and Reservoir Evaluations[J].WELL LOGGING TECHNOLOGY,2010,34(04):314.
          [8]張國棟,陳忠云,張志強.低滲透率儲層流度計算改進方法探討[J].測井技術,2016,40(01):40.[doi:10.16489/j.issn.1004-1338.2016.01.007]
           ZHANG Guodong,CHEN Zhongyun,ZHANG Zhiqiang.Mobility Calculation and Correction Methods of Formation Tester in Low-permeability Sands[J].WELL LOGGING TECHNOLOGY,2016,40(04):40.[doi:10.16489/j.issn.1004-1338.2016.01.007]

          備注/Memo

          備注/Memo:
          基金項目: 國家科技重大專項渤海海域大中型油氣田地質特征(2011ZX05023-006-002) 第一作者: 錢賡,男,1986年生,從事油氣勘探與開發地質相關研究工作。E-mail:[email protected]
          更新日期/Last Update: 2018-09-05
          11选五开奖结果